DeepSeek本地部署,小白也能搞定!

DeepSeek 是国内顶尖 AI 团队「深度求索」开发的多模态大模型,具备数学推理、代码生成等深度能力,堪称”AI界的六边形战士”。

DeepSeek 身上的标签有很多,其中最具代表性的标签有以下两个:

  1. 低成本(不挑硬件、开源)
  2. 高性能(推理能力极强、回答准确)
图片[1]-DeepSeek本地部署,小白也能搞定!-柚子博客

怎么部署本地大模型?

在本地部署 DeepSeek 只需要以下三步:

  1. 安装 Ollama。
  2. 部署 DeepSeek。
  3. 使用 DeepSeek:这里我们使用 ChatBox 客户端操作 DeepSeek(此步骤非必须)。

Ollama、DeepSeek 和 ChatBox 之间的关系如下:

  • Ollama 是“大管家”,负责把 DeepSeek 安装到你的电脑上。
  • DeepSeek 是“超级大脑”,住在 Ollama 搭建好的环境里,帮你做各种事情。
  • ChatBox 是“聊天工具”,让你更方便地和 DeepSeek 交流。

安装Ollama

Ollama 是一个开源的大型语言模型服务工具。它的主要作用是帮助用户快速在本地运行大模型,简化了在 Docker 容器内部署和管理大语言模型(LLM)的过程。

PS:Ollama 就是大模型届的“Docker”。

Ollama 优点如下:

  • 易于使用:即使是没有经验的用户也能轻松上手,无需开发即可直接与模型进行交互。
  • 轻量级:代码简洁,运行时占用资源少,能够在本地高效运行,不需要大量的计算资源。
  • 可扩展:支持多种模型架构,并易于添加新模型或更新现有模型,还支持热加载模型文件,无需重新启动即可切换不同的模型,具有较高的灵活性。
  • 预构建模型库:包含一系列预先训练好的大型语言模型,可用于各种任务,如文本生成、翻译、问答等,方便在本地运行大型语言模型。

Ollama 官网:https://ollama.com/

下载并安装Ollama

下载地址:https://ollama.com/

用户根据自己的操作系统选择对应的安装包,然后安装 Ollama 软件即可。

安装完成之后,你的电脑上就会有这样一个 Ollama 应用

点击应用就会运行 Ollama,此时在你电脑状态栏就可以看到 Ollama 的小图标,测试 Ollama 有没有安装成功,使用命令窗口输入“ollama -v”指令,能够正常响应并显示 Ollama 版本号就说明安装成功了

部署DeepSeek

Ollama 支持大模型列表:https://ollama.com/library

DeepSeek版本介绍

Ollama 支持大模型列表:https://ollama.com/library

选择 DeepSeek 大模型版本,如下表格所示:

模型参数规模典型用途CPU 建议GPU 建议内存建议 (RAM)磁盘空间建议适用场景
1.5b (15亿)小型推理、轻量级任务4核以上 (Intel i5 / AMD Ryzen 5)可选,入门级 GPU (如 NVIDIA GTX 1650, 4GB 显存)8GB10GB 以上 SSD小型 NLP 任务、文本生成、简单分类
7b (70亿)中等推理、通用任务6核以上 (Intel i7 / AMD Ryzen 7)中端 GPU (如 NVIDIA RTX 3060, 12GB 显存)16GB20GB 以上 SSD中等规模 NLP、对话系统、文本分析
14b (140亿)中大型推理、复杂任务8核以上 (Intel i9 / AMD Ryzen 9)高端 GPU (如 NVIDIA RTX 3090, 24GB 显存)32GB50GB 以上 SSD复杂 NLP、多轮对话、知识问答
32b (320亿)大型推理、高性能任务12核以上 (Intel Xeon / AMD Threadripper)高性能 GPU (如 NVIDIA A100, 40GB 显存)64GB100GB 以上 SSD大规模 NLP、多模态任务、研究用途
70b (700亿)超大规模推理、研究任务16核以上 (服务器级 CPU)多 GPU 并行 (如 2x NVIDIA A100, 80GB 显存)128GB200GB 以上 SSD超大规模模型、研究、企业级应用
671b (6710亿)超大规模训练、企业级任务服务器级 CPU (如 AMD EPYC / Intel Xeon)多 GPU 集群 (如 8x NVIDIA A100, 320GB 显存)256GB 或更高1TB 以上 NVMe SSD超大规模训练、企业级 AI 平台
© 版权声明
THE END
喜欢就支持一下吧
点赞104 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容